
LW- MW- diplexer 135.6 kHz, 100 kW - 540 kHz, 150 kW

Lakihegy/ Budapest

Technical Documentation

for acceptance tests

Sept. /Oct. 2006

Technical Documentation for acceptance tests Sept./Oct. 2006

Contents

- 1.0 Introduction
- 2.0 Design of antenna tuning unit as diplexer and operational values
- 3.0 Measured value of antenna impedances for 135.6 kHz
- 4.0 Measured values of impedances for 135.6 kHz +- 5 kHz at cable output
- 5.0 Measured values of antenna impedances for 540 kHz +- 20 kHz
- 6.0 Measured values of impedances for 540 kHz +- 20 kHz at open wire line
- 7.0 Coils and condensors, operational settings
- 8.0 Decoupling by filters
- 9.0 Spark gaps
- **10.0** Measuring instruments
- 11.0 Appendixes

Technical Documentation for acceptance tests Sept./Oct. 2006

1.0 Introduction

The Lakihegy Tower was constructed in 1933. It's height is 314 metres. At the time of it's erection it was the tallest building of Europe and it still the tallest building and a landmark of Hungary.

This mast design is known as Blaw-Knox radiator developed by the **Blaw-Knox** company which was a manufacturer of steel structures and construction equipment based in Pittsburgh, Pennsylvania (USA). The company designed radio towers, most of which were constructed during the 1930s in the United States and Europe.¹

Recently the tower in Lakihegy was completely restored because a new applicant was found: the provider EFR (Eurpäische Funk-Rundsteuerung) from Munich.

This company uses the frequency 135.6 kHz for controlling power systems of power producers. This means for example the remote switching on and off of wind mill power producers or the controlling of street lamps.

Simultanously the antenna shall be used as a redundancy for the national radio supplier Antenna Hungaria on 540 kHz, 2000 W radiating from Solt, 75 km South of Budapest in the center of the country.

Therefore a LW- MW- diplexer for 135.6 kHz, 100 kW and 540 kHz, 150 kW was designed and installed.

The frequencies 810 kHz und 873 kHz are also radiated from the site in Lakihegy. Filters for these frequencies are part of the diplexer.

Cincinnati, Ohio: 227 m; originally 253 m; tower located in Mason, Ohio.

<u>Charlotte</u>, North Carolina: three towers, 130 m each (one original, two reproductions from the original plans after the originals were destroyed in a hurricane)

Manchester, New Hampshire: 121 m

Columbus, Ohio: 116 m

Several additional such towers are in use at stations in California but are less well-known.

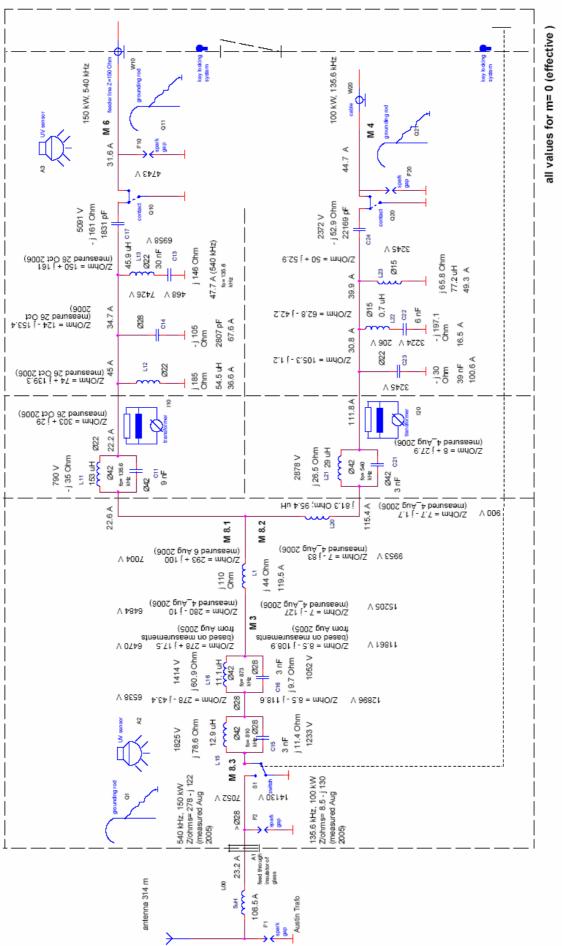
The following Blaw-Knox diamond-cantilever towers remain standing in Europe:

Lisnargarvey Mast (constructed: 1936) at Lisnargarvey, Northern Ireland Its height was originally 144.8 metres, but it was shortened when the station's broadcast frequency was changed.

¹ Although Blaw-Knox built many kinds of towers, the term **Blaw-Knox tower** (or radiator) usually refers to the company's unusual "diamond cantilever" design, which is held upright by guy wires attached only at the vertical center of the mast, where its cross-section is widest.

Many Blaw-Knox towers, of both conventional (uniform cross-section) and diamond design, remain in use in the United States. Few of the diamond towers were built, and several remain; all transmit AM radio signals:

Nashville, Tennessee: 246 m; originally 267 m; tower located in Brentwood, Tennessee.


<u>Vakarel Transmitter</u> (constructed: 1937, height: 352.9 metres, **tallest Blaw-Knox Tower in the world**) at Vakarel, Bulgaria

Stara Zagora Transmitter at Stara Zagora, Bulgaria

Technical Documentation for acceptance tests Sept./Oct. 2006

2.0 Design of antenna tuning unit as diplexer and operational values

The design of the antenna tuning unit as diplexer is shown below. The same document is given as file 51-8920-810-00 WSP_LAKIHEGY_ATU_AE05.pdf (A3 format) in the appendix (1).

Technical Documentation for acceptance tests Sept./Oct. 2006

Technical Documentation for acceptance tests Sept./Oct. 2006

At the base of the antenna the coil L00 for protection against lightning is installed. Lightning current flowing from the mast into this coil increases the voltages at the spark gaps F1 and F2 ($u = L \cdot di/dt$) avoiding damages of antenna tuning components by lightning.

The drawing contains also operational values as currents and voltages.

3.0 Measured value of antenna impedances for 135.6 kHz

In order to protect the measuring instruments against high voltages occurring at the base of the antenna - caused by the frequencies 810 kHz and 873 kHz which also radiated from the site in Lakihegy - the antenna impedance was measured behind the filters for 810 and 873 kHz. (Measuring point M3)

antenna impedances for 135.6 kHz:

f/ kHz	Z/ Ohm
135.6	7.0 – j 127.0

4.0 Measured values of impedances for 135.6 kHz +- 5 kHz at cable output

The measured values of impedances for 135.6 kHz +- 5 kHz at the cable output are given in the following table and the plot below. (Measuring point M4)

6/111	7/ 01
f/ kHz	Z/ Ohm
135.6	53.7 – j 0.5
135.8	62.4 + j 3.1
136.0	72.9 + j 5.0
137.7	183.5 – 114.2
140.15	36.3 – j 155.7
135.4	45.4 – j 6.1
135.2	40.3 – j 10
134.6	27.6 – j 21.6
130.6	6.0 – j 61.1

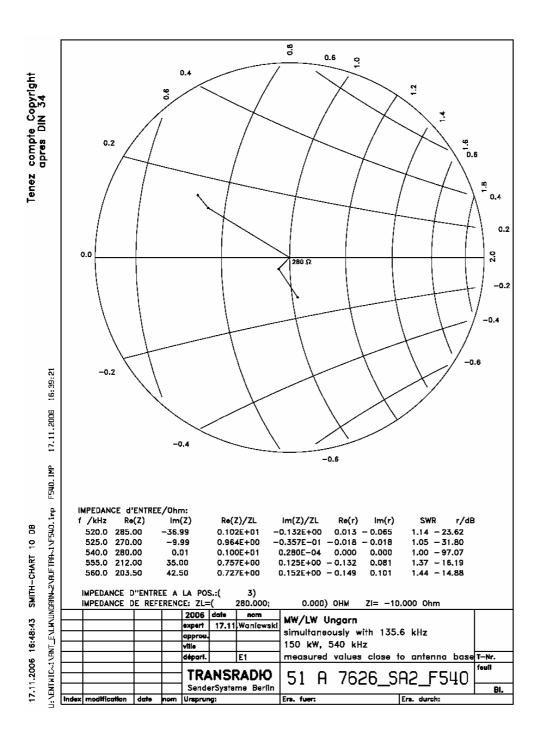
Technical Documentation for acceptance tests Sept./Oct. 2006

5.0 Measured values of antenna impedances for 540 kHz +- 20 kHz

In order to protect the measuring instruments against high voltages occurring at the base of the antenna - caused by the frequencies 810 kHz and 873 kHz which also radiated from the site in Lakihegy - the antenna impedance was measured behind the filters for 810 and 873 kHz. (Measuring point M3)

antenna impedances for 540 kHz:

f/ kHz	Z/ Ohm	f/ kHz	Z/ Ohm	f/ kHz	Z/ Ohm
540.0	280 – j 10	520.0	285 – j 47.0	560.0	203.5 + j 32.5
		525.0	270 – j 20.0	555.0	212 + j 25.0

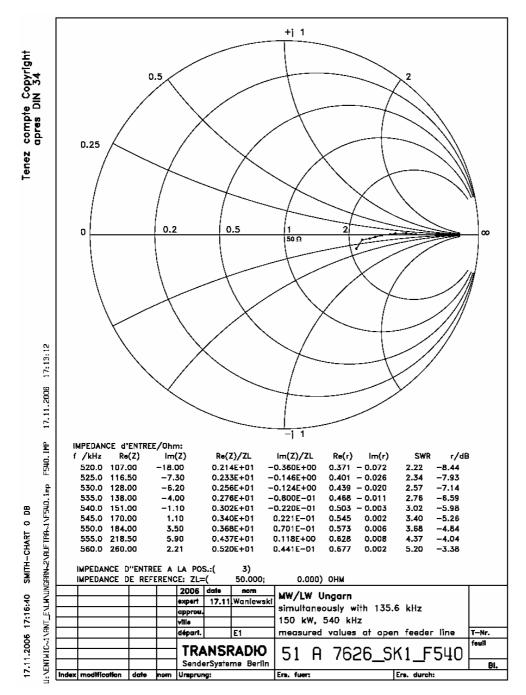

Technical Documentation for acceptance tests Sept./Oct. 2006

+j 1 Tenez compte Copyright apres DIN 34 0.5 0.25 0.2 0.5 0 œ 50 0 16:39:21 17.11.2006 -1 1 ЧЫ F540.1 IMPEDANCE d'ENTREE/Ohm: цщ. f /kHz Re(Z) Re(Z)/ZL lm(Z)/ZL SWR lm(Z) Re(r) lm(r) r/dB U: \ENTWIC~1\RNT_E\LW\UNGARN~2\RUFTRA~1\F540. 520.0 285.00 -46.99 0.570E+01 -0.940E+00 0.707 - 0.041 5.86 -2.99 8 -3.24 -3.13 -4.11 -4.24 -0.400E+00 -0.200E+00 0.689 - 0.019 525.0 270.00 -19.99 0.540E+01 5.43 ¢ 540.0 280.00 0.560E+01 0.697 5.61 - 0.009 -9.99SMITH-CHART 555.0 212.00 25.00 0.424E+01 0.500E+00 0.622 0.036 4.30 560.0 203.50 32.50 0.407E+01 0.650E+00 0.612 0.050 4.18 IMPEDANCE D''ENTREE A LA POS.:(IMPEDANCE DE REFERENCE: ZL=(3) 50.000; 0.000) OHM 2006 date nom MW/LW Ungarn 17.11.2006 16:41:09 17.11 Waniewski expert simultaneously with 135.6 kHz approu 150 kW, 540 kHz vîlle measured values close to antenna base T-Nr. départ. ouil TRANSRADIO 51 A 7626_SA1_F540 SenderSysteme Berlin BI. nom Unsprung: Index modification date Era. fuer: Ers. durch:

Please see Smith- Chart below:

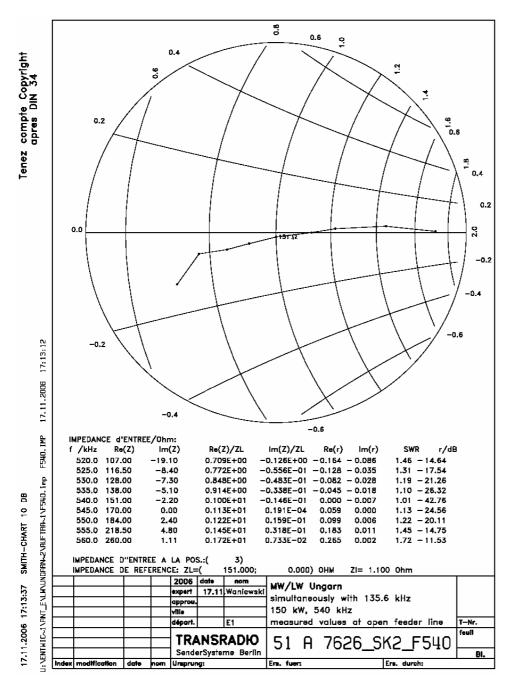
Technical Documentation for acceptance tests Sept./Oct. 2006

The standing wave ratio can be obtained by relating all impedance values to the antenna impedance of 540 kHz:



Technical Documentation for acceptance tests Sept./Oct. 2006

6.0 Measured values of impedances for 540 kHz +- 20 kHz at open wire line


The measured values of impedances for 540 kHz +- 20 kHz at the open wire line are given in the following table and the plot below. (Measuring point M6)

f/ kHz	Z/ Ohm	f/ kHz	Z/ Ohm	f/ kHz	Z/ Ohm
540.0	151 – j 1.1	520	107 – j 18.0	560	260 + j 2.2
		525	116.5 – j 7.3	555	218.5 + j 5.9
		530	128 – j 6.2	550	184 + j3.5
		535	138 – j 4.0	545	170 + j 1.1

Technical Documentation for acceptance tests Sept./Oct. 2006

The standing wave ratio can be obtained by relating all impedance values to the antenna impedance of 540 kHz:

7.0 Coils and condensors, operational settings

Coils in alphabetic order:

coil	D/mm	d/mm	windings total	windings active
L1	450	42	23	23 (all)
L11	450	22	40	40 (all)
L12	450	28	20	20 (all)

Technical Documentation for acceptance tests Sept./Oct. 2006

Coils (continued):

L13	300	22	30	27
L15	450	42	10	8
L16	450	42	10	8,05
L20	450	22	30	26,25
L21	700	28	2 x 11	11 (all) top
				10,4 bottom
L22	300	15	8	0, short circuited
L23	300	15	30	30 (all)

Condensors in alphabetic order:

C11	pF	рF	pF		pF	рF	pF
		front			rear		
	In series :	In series :	In series :		In series :	In series :	In series :
	1000	1000	1000		1000	1000	1000
	1000	1000	1000		1000	1000	1000
	In series :	In series :	In series :		In series :	In series :	In series :
	1000	1000	1000		1000	1000	1000
	1000	1000	1000		1000	1000	1000
	In series :	In series :	In series :		In series :	In series :	In series :
	1000	1000	1000		1000	1000	1000
	1000	1000	1000		1000	1000	1000
	Front and rear are in parallel						
	Total :	9000 pF					

C13	pF	pF	pF	pF	
	fro	ont	rear		
	In parallel : 3000 3000	In parallel : 3000 3000	In parallel : 3000 3000 3000	In parallel : 3000 3000 3000	
	front and rear	all in parallel			
	Total :	30000 pF			

C14	pF	pF		pF	pF	Σ
	rear				front	
	In series :	In series :		In series :	In series :	
	3000	1000		3000	3000	10000
	3000	1000		3000	3000	10000
	3000	200		3000	400 in	6733
					parallel	
					with 200	
					and 400	
					in series = 533	
	all four rows in parallel of front and rear are in parallel					
	Total :	2869 pF				

Technical Documentation for acceptance tests Sept./Oct. 2006

Condensors (continued):

C15	pF	pF	pF
	1000	1000	1000
	all three in pa		
	Total :	3000 pF	

C16	pF	pF	pF
	1000	1000	1000
	all three in pa		
	Total :	3000 pF	

C17	pF	pF		pF	pF
	re		front		
	In	In		In	In
	series :	series :		series :	series :
	1000	1000		3000	3000
	3000	200		400	1000
	1000				
Σ	428.6	166.7		352.9	750
	all four rows in parallel of front and rear			and rear	
	are in parallel				
	Total :	1698 pF			

C21	pF	pF	pF	pF	pF		pF	pF	pF	pF
	front							re	ar	
	1000	1000	1000	1000	1000		1000	1000	1000	1000
	1000	1000	1000	1000	1000		1000	1000	1000	1000
	1000	1000	1000	1000	1000		1000	1000	1000	1000
	all columns of front and rear are in se					erie	es			
	Total	: 300)0 pF							

C22	рF	pF	pF		pF	pF	pF
	front				rear		
	1000	1000	1000		1000	1000	1000
	1000		1000		1000	1000	1000
	all are in parallel						
	Total :	1100	0 pF				

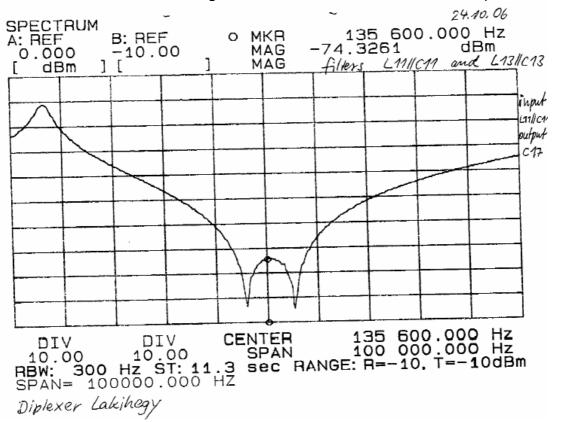
C23	pF	pF	рF		pF	pF	pF
	front				rear		
	3000	3000	3000		3000	3000	3000
	3000	3000	3000		3000	3000	3000
						3000	
	all are in parallel						
	Total : 39000 pF						

C24	pF	pF	pF		pF	pF	pF
	front					rear	
	3000	3000	2000		2000	3000	3000
	3000	3000			1000	3000	3000
	all are	in para	llel				
	Total :	2900	0 pF				

Technical Documentation for acceptance tests Sept./Oct. 2006

"Front" must be understood as "looking towards the nearest wall".

8.0 Decoupling by filters

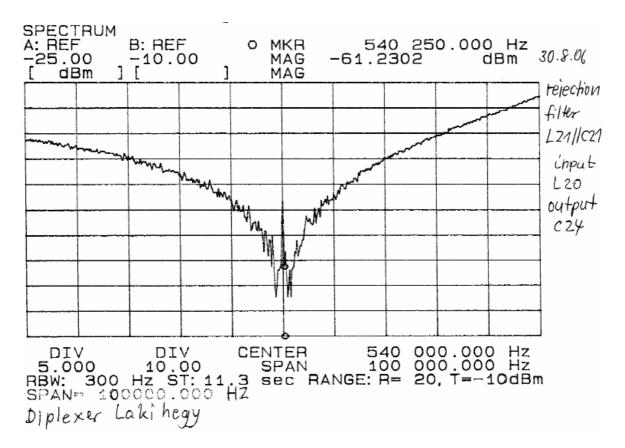

In addition to the necessary decoupling of the two frequencies of the diplexer 135.6 kHz and 540 kHz filters are needed for the frequencies 810 kHz and 873 kHz which are induced in the antenna from masts nearby on the same site of Lakihegy.

The measurement of the following filters has been carried out:

- Filters for 135.6 kHz

Tuning elements L11/ C11 in parallel (rejection) and L13 / C13 in series (drain)

Transmission measurement was carried out between M8.1 and M6. M8.1 is open and disconnected from the other tuning elements. M6 is disconnected from the open feeder line.

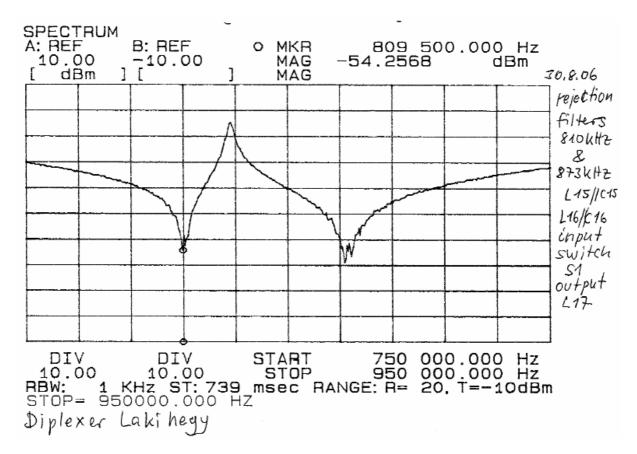

The same document is given as file "filters_135_6_kHz.pdf" in the appendix (2).

Technical Documentation for acceptance tests Sept./Oct. 2006

- Rejection Filter for 540 kHz

Tuning elements L21/C21 in parallel (rejection)

Transmission measurement was carried out between M8.2 and M4. M8.2 is open, disconnected from the other tuning elements. M4 is disconnected from cable.


The same document is given as file "filter_540.pdf" in the appendix (2).

Rejection Filters for 810 kHz and 873 kHz

Tuning elements L15/ C15 in parallel (rejection) for 810 kHz

Tuning elements L16/ C16 in parallel (rejection) for 873 kHz

Transmission measurement was carried out between M8.3 and M6. M8.3 is open and disconnected from the other tuning elements. M6 is disconnected from the open feeder line.

Technical Documentation for acceptance tests Sept./Oct. 2006

The same document is given as file "filters_810_873_kHz.pdf" in the appendix (4).

9.0 Spark gaps

The setting of the spark gaps can be seen below:

Spark gap	sphere diameter	Spacing
	mm	mm
F1 base of mast	80	70
F1A Austin transformer	60	50
F2 feed through insulator	50	30
F10 open feeder line 540 kHz	50	15
F20 cable 135.6 kHz	50	15

10.0 Measuring instruments

Measurements were carried out using equipment of Antenna Hungaria (Mr. Kovacs) or TRANSRADIO.

The equipment of Antenna Hungaria consists of: Delta Electronics OIB-3 Operating Impedance Bridge Delta Electronics RG-4 Receiver Generator

Technical Documentation for acceptance tests Sept./Oct. 2006

The equipment of TRANSRADIO consists of:

Network- Analyzer:	HP 4195A
Directional coupler :	TELEFUNKEN/TRANSRADIO
Amplifier:	EIN Model A150
Plotter:	HP Color Pro

11.0 Appendixes

Anlage	Document	Pdf- file	Contents
1	Dwg. 51-8920-810-00 WSP	51-8920-810-00 WSP_LAKIHEGY_ATU_AE05.pdf	Design of diplexer Operational values
2	Plot	filters_135_6_kHz.pdf	Attenuation by filter
3	Plot	filter_540.pdf	Attenuation by filter
4	Plot	filters_810_873_kHz.pdf	Attenuation by filter